skip to main content


Search for: All records

Creators/Authors contains: "Chu, Zhaodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the nanoscale electrodynamic properties of a material at microwave frequencies is of great interest for materials science, condensed matter physics, device engineering, and biology. With specialized probes, sensitive detection electronics, and improved scanning platforms, microwave microscopy has become an important tool for cutting-edge materials research in the past decade. In this article, we review the basic components and data interpretation of microwave imaging and its broad range of applications. In addition to the general-purpose mapping of permittivity and conductivity, microwave microscopy is now exploited to perform quantitative measurements on semiconductor devices, photosensitive materials, ferroelectric domains and domain walls, and acoustic-wave systems. Implementation of the technique in low-temperature and high-magnetic-field chambers has also led to major discoveries in quantum materials with strong correlation and topological order. We conclude the review with an outlook of the ultimate resolution, operation frequency, and future industrial and academic applications of near-field microwave microscopy. Expected final online publication date for the Annual Review of Materials Research, Volume 50 is July 1, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  2. Abstract

    The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 μs and 10 μs correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3~5 μm) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.

     
    more » « less
  3. null (Ed.)
  4. Significance

    Defects in two-dimensional (2D) transition-metal dichalcogenides play a crucial role in controlling the spatiotemporal dynamics of photogenerated charge carriers, which remain poorly understood to date. In this paper, the defect-mediated carrier diffusion and recombination in WS2monolayers are quantitatively investigated by laser-illuminated microwave impedance microscopy. Surprisingly, the photoresponse is in general stronger in the more disordered regions and samples. Such counterintuitive observations are reconciled by spatiotemporally resolved experiments, which indicate that the electron lifetime is prolonged due to the slow release of holes from the trap states. The results reveal the intrinsic time and length scales of photocarriers in van der Waals materials, providing the guidance for implementing nanooptoelectronic devices based on 2D semiconductors.

     
    more » « less
  5. Abstract

    Semiconductor heterostructures have played a critical role as the enabler for new science and technology. The emergence of transition‐metal dichalcogenides (TMDs) as atomically thin semiconductors has opened new frontiers in semiconductor heterostructures either by stacking different TMDs to form vertical heterojunctions or by stitching them laterally to form lateral heterojunctions via direct growth. In conventional semiconductor heterostructures, the design of multijunctions is critical to achieve carrier confinement. Analogously, successful synthesis of a monolayer WS2/WS2(1−x)Se2x/WS2multijunction lateral heterostructure via direct growth by chemical vapor deposition is reported. The grown structures are characterized by Raman, photoluminescence, and annular dark‐field scanning transmission electron microscopy to determine their lateral compositional profile. More importantly, using microwave impedance microscopy, it is demonstrated that the local photoconductivity in the alloy region can be tailored and enhanced by two orders of magnitude over pure WS2. Finite element analysis confirms that this effect is due to the carrier diffusion and confinement into the alloy region. This work exemplifies the technological potential of atomically thin lateral heterostructures in optoelectronic applications.

     
    more » « less